

Isolated Photon Cross Section at DØ

Ashish Kumar
State Univ of New York at Buffalo

On behalf of the DØ Collaboration

Outline

- □ DØ expt at Fermilab Tevatron
- □ Motivation
- ☐ Analysis strategy
- ☐ Cross section results
- □ Comparison with theory
- ☐ Summary

hep-ex/0511045

Accepted by Phys.Lett. B

Tevatron pp-collider 44

record high

Run II (March 2001 \rightarrow) $\sqrt{s} = 1.96 \text{ TeV}$ 36x36 bunches colliding per 396 ns 2-3 interactions/crossing

Excellent Tevatron performance!

Peak L: 1.72E32 cm⁻²s⁻¹

 $\int \mathcal{L} dt$: 27 pb⁻¹ /week

Delivered >1.4 fb-1

Goal: 8 fb-1 by 2009

Currently in shutdown DØ Silicon & Trigger upgrades

The DØ Detector

- □Inner tracker (silicon mictrostrips and scintillating fibers) inside 2T superconducting solenoid: |η|<2.5 ⇒ precise vertexing and tracking
 □Wire tracking and scintillating muon system: |η|<2
 □Three-Level trigger → 50Hz
- □ Liquid Ar sampling & U absorber
 □ Hermetic with full coverage ($|\eta|<4.2$)
 □ 4 EM Layers: shower-max EM3
 □ Fine transverse segmentation $\Delta\eta \times \Delta\phi = 0.1\times0.1 \ (0.05\times0.05 \ \text{in EM3})$ □ Good energy resolution

Motivation

Direct photons emerge unaltered from the hard interaction

- ⇒direct probe of the hard scattering dynamics
- ⇒clean probe without complication from fragmentation & systematics associated with jet identification and measurement

- Precision test of pQCD
- □ Direct information on gluon density in the proton: gluon involved at LO in contrast to DIS & DY processes
- ☐ Test of soft gluon resummation, models of gluon radiation,..
- ☐ Understanding the QCD production mechanisms of photons is prerequisite to searches for new physics.

Direct Photon Production

inclusive photon cross section $0 < |\eta| < 0.9$ partonic subprocesses

Primarily produced by $qg \rightarrow \gamma q$ for $p_T^{\gamma} < 150 \text{ GeV}$

- \Rightarrow precision test of QCD over much wider $\mathbf{p}_{\mathsf{T}}^{\gamma}$ range than Run I .
- \Rightarrow probe $G(x,Q^2)$ with large Q^2 & in wide range: $0.02 < x_{T} < 0.25$

Extremely challenging!

 $\sigma(\text{jets})/\sigma(\gamma) \approx 10^3 \Rightarrow \text{severe background}$ from jet fragmenting into a leading π^0 (or η), particularly at small p_{τ}^{γ}

Bremsstrahlung

Small background from electroweak processes (mainly W) at high p_{T}^{γ}

Photon Identification

Reconstruct EM objects from energy clusters in calorimeter by cone algorithm

$$\textbf{E}_{T}^{cluster} = \sum_{\textbf{R} \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2} \leq 0.4} \textbf{E}_{T}^{towers}$$

Require:

- □ >95% of energy in EM layers
- \Box Isolation : $(E_{total}^{R=0.4} E_{EM}^{R=0.2}) < 0.1E_{EM}^{R=0.2}$
- □ Veto track(s) around EM cluster
- ☐ Shower profile compatible with photon

 \Rightarrow Suppress most of the jet background except when single π^0 or η carries most of the jet's energy: significant amount due to large jet cross section

Event Selection

- \square Single high p_T EM triggers
- □ Vertex: |z| < 50 cm, ≥ 3 tracks
- \Box p_T^{γ} > 23 GeV
- \Box $|\eta^{\gamma}| < 0.9$
- □ Small missing E_T ($E_T/p_T^{\gamma} < 0.7$) to suppress Ws(\rightarrow ev) and cosmic events.

Selection efficiencies estimated with fully simulated γ^{direct} +jet events \Rightarrow corrections derived from comparison of $Z\rightarrow e^+e^-$ data/MC events.

Main background: Highly em-jets with energetic π^0 , η , K_s^0 , ω . Can be reduced but not entirely removed.

Background Suppression 4

Design a neural network (NN)

0.1

8.0

 O_{NN}

0.6

Photon Purity

After NN selection: 2.7×106 photon

candidates: 17 p_T^{γ} bins

Photon purity determined from fitting NN output in data to predicted NN outputs for signal and background.

- \Rightarrow statistical uncertainty dominated by MC statistics (em-jet) at low p_T^{γ} and data statistics at high p_T^{γ} .
- ⇒systematic uncertainty from fitting and fragmentation model in Pythia.

Data well described by the sum of MC signal + background samples, especially for events with NN_{output}>0.5.

 $2.7 \times 10^6 \gamma$ candidates: $23 < p_T^{\gamma} < 300 \text{ GeV}$

Correction for finite detector resolution. p_T^{γ} corrected for shift in energy scale.

Results shown with statistical \oplus systematic uncertainties.

Theory: NLO pQCD calculation from JETPHOX (P. Aurenche et. al.) using CTEQ6.1M PDFs & BFG FFs.

NLO calculation by Vogelsang et. Al. based on small- cone approx. and using GRV FFs agree within 4%.

$$\frac{d^2\sigma}{dp_T d\eta} = \frac{N \mathcal{P} U}{L \Delta p_T^{\gamma} \Delta \eta A\epsilon}$$

Theoretical predictions consistent with measured cross-section.

Data vs Theory

Good agreement within uncertainties, in the whole p_T^{γ} range.

- ☐ Uncertainty from choice of PDFs (MRST2004/Alekhin2004) < 7%.
- □ Variation in calculations for 50% change in isolation requirement and hadronic fraction in the cone <3%

Shape diff. at low p_T^{γ} : interpretation difficult due to large theoretical scale uncertainty and exp. syst. uncertainty.

NNLO calculations should reduce scale dependence. Calculations enhanced for soft-gluon contributions should provide better descriptions of data at low p_T^{γ} .

Measurement uncertainties

Statistical : 0.1% - 13.2% Systematic : 13% - 25%

-- mainly from purity estimation

Summary

Direct photon production is an ideal testing ground for QCD predictions and constraining PDFs.

DØ has measured inclusive cross section of isolated photons in central region ($|\eta|<0.9$) and in the widest p_T^{γ} domain ever covered (23 < $p_T^{\gamma}<$ 300 GeV). Results from the NLO pQCD agree with the measurement within uncertainties.

Exciting work in progress with ~1 fb⁻¹ data. Also on other fronts : $\gamma\gamma$, γ +jet, γ +heavy flavor jet ..

So stay tuned!

Stack of disks with $D\emptyset$ data will soon eclipse Eiffel Tower.

Backup

Photon Energy Scale

Photons lose noticeably less energy in the material upstream of calorimeter than electrons (used for energy calibration)

⇒systematic over-correction in the energy scale for photons which would yield shift in the measured cross section.

 \Rightarrow need to correct p_T^{γ}

Neutral mesons component yield photons of smaller energy \Rightarrow additional shift of the measured p_T^{γ} .

Use γ +jet and em-jet simulated events to determine shift between true and reconstructed $p_{T}^{\gamma} \Rightarrow 1.9\%$ at 20 GeV, 1% at 40 GeV and <0.3% above 70 GeV.

Systematic Uncertainties

Luminosity: 6.5%

Vertex determination: 3.6 - 5.0%

Energy calibration: 9.6 - 5.5%

Fragmentation model: 1.0 - 7.3%

Photon conversions: 3%

Photon purity fit: 6 - 13%

Statistical uncertainties on determination of

Geometric Acceptance: 1.5%

Trigger efficiency: 11 - 1%

Selection efficiency: 5.4 - 3.8%

Unsmearing: 1.5%

Gluon distribution uncertainties

Most uncertain of the PDFs. The plot shows current uncertainty of the gluon distribution (due to experimental inputs only) estimated by CTEQ6.

- ❖ ≈15% for x<0.25 and increases
 </p> rapidly for larger x.
- at small x, the theoretical uncertainty (not included here) should increase widening the error band

